The Speex Codec Manual
Version 1.2 Beta 3

Jean-Marc Valin

December 8, 2007

Copyright(©2002-2007 Jean-Marc Valin/Xiph.org Foundation

Permission is granted to copy, distribute and/or modifg tiocument under the terms of the GNU Free Documentation
License, Version 1.1 or any later version published by theeeBoftware Foundation; with no Invariant Section, with norf
Cover Texts, and with no Back-Cover. A copy of the licenseniduded in the section entitled "GNU Free Documentation
License".

Contents

Introduction to Speex
1.1 Gettinghelp o e
1.2 Aboutthisdocument e e e

Codec description

2.1 COoNCePLS e e e
2.2 COUBC o e e e
2.3 PreproCESSOr v o i e e e e e e e e e e e e e e
2.4 Adaptive Jitter Buffer e e e e e
2.5 AcousticEcho Canceller e e
2.6 Resampler e e

Compiling and Porting

3.1 Platforms

3.2 Portingand Optimising e e
3.2.1 CPRUoptimisation e e e
3.2.2 Memoryoptimisation e e e e e

Command-line encoder/decoder
4.1 SPEEXENC . . . v i e e e e e e e e e e
4.2 SPEEXUEC e e e e e e e

Using the Speex Codec API (libspeex)

5.1 ENncoding o e
5.2 Decoding e e
5.3 CodecOptions (speex_* ctl) e e
5.4 Mode qQUETIES o e e e e e e e e e e e
5.5 Packingandin-bandsignalling

Speech Processing API (libspeexdsp)

6.1 PreproCeSSOr. o o i e e e e e
6.1.1 Preprocessoroptions e e e

6.2 EchoCancellation e e
6.2.1 Troubleshooting e e e

6.3 Jitter Buffer e e e e e

6.4 Resampler e e e

6.5 RingBuffer e e

Formats and standards

7.1 RTPPayload Format e e e
7.2 MIMETYPE . . . e e e
7.3 Oggfileformat e e

Introduction to CELP Coding

8.1 Source-Filter Model of Speech Prediction
8.2 Linear Prediction (LPC) e e e
8.3 Pitch Prediction
8.4 Innovation Codebook e e
8.5 Noise Weighting e
8.6 Analysis-by-Synthesis e e e

Contents

9 Speex narrowband mode
9.1 Whole-Frame Analysis e e e
9.2 Sub-Frame Analysis-by-Synthesis
9.3 Bitallocation e e
9.4 Perceptual enhancement e e e

10 Speex wideband mode (sub-band CELP)
10.1 Linear Prediction e e
10.2 Pitch Prediction e e e
10.3 Excitation Quantization e e e
10.4 Bitallocation e e e

A Sample code
Al sampleencC.C e e e
A2 sampledeC.C e e e

Jitter Buffer for Speex
IETF RTP Profile

Speex License

m © O @

GNU Free Documentation License

30
30
30
32
32

34
34
34
34
34

36
36
37

39

41

60

61

List of Tables

5.1 In-band signalling codes

... 18
7.1 Ogg/Speexheaderpacket e e e e 25
9.1 Bitallocation for narrowbandmodes e 32
9.2 Qualityversusbit-rate e e e 33
10.1 Bitallocation for high-band inwidebandmode Lo 34
10.2 Quality versus bit-rate for the widebandencoder L oL 35

1 Introduction to Speex

The Speex codedf t p: / / www. speex. or g/) exists because there is a need for a speech codec that isopeare and
free from software patent royalties. These are essentralittons for being usable in any open-source software. $emsce,
Speex is to speech what Vorbis is to audio/music. Unlike ntahgr speech codecs, Speex is not designed for mobile phones
but rather for packet networks and voice over IP (VoIP) aygtions. File-based compression is of course also sugporte

The Speex codec is designed to be very flexible and suppode range of speech quality and bit-rate. Support for very
good quality speech also means that Speex can encode wilspaach (16 kHz sampling rate) in addition to narrowband
speech (telephone quality, 8 kHz sampling rate).

Designing for VoIP instead of mobile phones means that Sigembust to lost packets, but not to corrupted ones. This is
based on the assumption that in VoIP, packets either arrig#tared or don't arrive at all. Because Speex is targetadatle
range of devices, it has modest (adjustable) complexityeasrdall memory footprint.

All the design goals led to the choice of CELP as the encodinfrtique. One of the main reasons is that CELP has long
proved that it could work reliably and scale well to both loit+tates (e.g. DoD CELP @ 4.8 kbps) and high bit-rates (e.g.
G.728 @ 16 kbps).

1.1 Getting help

As for many open source projects, there are many ways to ¢etlid Speex. These include:
e This manual

e Other documentation on the Speex website (http://wwwxspegy)

Mailing list: Discuss any Speex-related topic on speex@giph.org (not just for developers)

IRC: The main channel is #speex on irc.freenode.net. Nakdbe to time differences, it may take a while to get
someone, so please be patient.

e Email the author privately at jean-marc.valin@usherbeocéonly for private/delicate topics you do not wish to discuss
publically.

Before asking for help (mailing list or IRCIY,is important to first read this manual (OK, so if you made it here it's already

a good sign). Itis generally considered rude to ask on a ngglit about topics that are clearly detailed in the docutatgm.

On the other hand, it's perfectly OK (and encouraged) to asklifrifications about something covered in the manuals Thi
manual does not (yet) cover everything about Speex, so enerig encouraged to ask questions, send comments, feature
requests, or just let us know how Speex is being used.

Here are some additional guidelines related to the maiistg Before reporting bugs in Speex to the list, it is strgngl
recommended (if possible) to first test whether these bugbeaeproduced using the speexenc and speexdec (see Fgction
command-line utilities. Bugs reported based on 3rd partdeare both harder to find and far too often caused by errors tha
have nothing to do with Speex.

1.2 About this document

This document is divided in the following way. Section 2 déses the different Speex features and defines many bagis ter
that are used throughout this manual. Section 4 documengtsahdard command-line tools provided in the Speex disioib.
Section 5 includes detailed instructions about programgrasing the libspeex API. Section 7 has some informationedle
Speex and standards.

The three last sections describe the algorithms used inxSpéese sections require signal processing knowledgerbut
not required for merely using Speex. They are intended fopfgewho want to understand how Speex really works and/or
want to do research based on Speex. Section 8 explains tkeafj@iea behind CELP, while sections 9 and 10 are specific to
Speex.

2 Codec description

This section describes Speex and its features into mordseta

2.1 Concepts

Before introducing all the Speex features, here are someegts in speech coding that help better understand thefrést o
manual. Although some are general concepts in speech/pratiessing, others are specific to Speex.

Sampling rate

The sampling rate expressed in Hertz (Hz) is the number opksriaken from a signal per second. For a sampling rate
of Fs kHz, the highest frequency that can be represented is equa) 2 kHz (Fs/2 is known as the Nyquist frequency).
This is a fundamental property in signal processing and $srileed by the sampling theorem. Speex is mainly designed fo
three different sampling rates: 8 kHz, 16 kHz, and 32 kHz. sEhare respectively refered to as narrowband, wideband and
ultra-wideband.

Bit-rate

When encoding a speech signal, the bit-rate is defined asutheer of bits per unit of time required to encode the spedch. |
is measured ibits per secondbps), or generallkilobits per secondit is important to make the distinction betweldfobits
per secondkbps) andkilobytes per secondkBps).

Quality (variable)

Speex is a lossy codec, which means that it achives compreasthe expense of fidelity of the input speech signal. @nlik
some other speech codecs, it is possible to control thedfmiade between quality and bit-rate. The Speex encodincgss

is controlled most of the time by a quality parameter thagesfrom 0 to 10. In constant bit-rate (CBR) operation, thaityu
parameter is an integer, while for variable bit-rate (VBRE parameter is a float.

Complexity (variable)

With Speex, it is possible to vary the complexity allowed foe encoder. This is done by controlling how the search is
performed with an integer ranging from 1 to 10 in a way thaitisilsr to the -1 to -9 options tgzipandbzip2compression
utilities. For normal use, the noise level at complexity bé&tween 1 and 2 dB higher than at complexity 10, but the CPU
requirements for complexity 10 is about 5 times higher thancbmplexity 1. In practice, the best trade-off is between
complexity 2 and 4, though higher settings are often usefilmencoding non-speech sounds like DTMF tones.

Variable Bit-Rate (VBR)

Variable bit-rate (VBR) allows a codec to change its bierdynamically to adapt to the “difficulty” of the audio being
encoded. In the example of Speex, sounds like vowels anddrighgy transients require a higher bit-rate to achievelgoo
quality, while fricatives (e.g. s,f sounds) can be codedjadéely with less bits. For this reason, VBR can achive |dvierate

for the same quality, or a better quality for a certain bteradDespite its advantages, VBR has two main drawbacks; tiyst
only specifying quality, there’s no guaranty about the fenadrage bit-rate. Second, for some real-time applicatikesoice
over IP (VolP), what counts is the maximum bit-rate, whichstriue low enough for the communication channel.

Average Bit-Rate (ABR)

Average bit-rate solves one of the problems of VBR, as it dyically adjusts VBR quality in order to meet a specific target
bit-rate. Because the quality/bit-rate is adjusted in-teaé (open-loop), the global quality will be slightly lowéhan that
obtained by encoding in VBR with exactly the right qualitytsey to meet the target average bit-rate.

2 Codec description

Voice Activity Detection (VAD)

When enabled, voice activity detection detects whetheatltio being encoded is speech or silence/background NéA&e.

is always implicitly activated when encoding in VBR, so th#ion is only useful in non-VBR operation. In this case, Spee
detects non-speech periods and encode them with just etitsgb reproduce the background noise. This is called “cof
noise generation” (CNG).

Discontinuous Transmission (DTX)

Discontinuous transmission is an addition to VAD/VBR opiena, that allows to stop transmitting completely when the
background noise is stationary. In file-based operatiotesive cannot just stop writing to the file, only 5 bits are ufeed
such frames (corresponding to 250 bps).

Perceptual enhancement

Perceptual enhancement is a part of the decoder which, winead on, attempts to reduce the perception of the noise/dis
tortion produced by the encoding/decoding process. In casss, perceptual enhancement brings the sound furtinetHieo
original objectively(e.g. considering only SNR), but in the end it stilundsbetter (subjective improvement).

Latency and algorithmic delay

Every speech codec introduces a delay in the transmisswrSpeex, this delay is equal to the frame size, plus some aimou
of “look-ahead” required to process each frame. In narrowltzgperation (8 kHz), the delay is 30 ms, while for widebargi (1
kHz), the delay is 34 ms. These values don't account for thd @Re it takes to encode or decode the frames.

2.2 Codec

The main characteristics of Speex can be summarized asvillo

e Free software/open-source, patent and royalty-free

¢ Integration of narrowband and wideband using an embeddesirbam

e Wide range of bit-rates available (from 2.15 kbps to 44 kbps)

e Dynamic bit-rate switching (AMR) and Variable Bit-Rate (RBoperation

¢ \oice Activity Detection (VAD, integrated with VBR) and daientinuous transmission (DTX)
e Variable complexity

e Embedded wideband structure (scalable sampling rate)

e Ultra-wideband sampling rate at 32 kHz

¢ Intensity stereo encoding option

e Fixed-pointimplementation

2.3 Preprocessor

This part refers to the preprocessor module introducederith.x branch. The preprocessor is designed to be used on the
audiobeforerunning the encoder. The preprocessor provides three maatibnalities:

e noise suppression
e automatic gain control (AGC)

e voice activity detection (VAD)

2 Codec description

loudspeaker

far end speech
x(n) ¢

adaptive filter

h(n) reverberation

3(n) ¥(n)
N/
e(n) W MY + v(n)
output A near end speech
P microphone .
(to far end) and noise

Figure 2.1: Acoustic echo model

The denoiser can be used to reduce the amount of backgroiselpresent in the input signal. This provides higher qualit
speech whether or not the denoised signal is encoded wigxgpeat all). However, when using the denoised signal vhiéh t
codec, there is an additional benefit. Speech codecs in@d®greex included) tend to perform poorly on noisy inputiclih
tends to amplify the noise. The denoiser greatly reduce=tiect.

Automatic gain control (AGC) is a feature that deals with filaet that the recording volume may vary by a large amount
between different setups. The AGC provides a way to adjugjrebkto a reference volume. This is useful for voice over
IP because it removes the need for manual adjustment of ttr@pptione gain. A secondary advantage is that by setting the
microphone gain to a conservative (low) level, it is easieanoid clipping.

The voice activity detector (VAD) provided by the preprosasis more advanced than the one directly provided in the
codec.

2.4 Adaptive Jitter Buffer

When transmitting voice (or any content for that matter)rdy®P or RTP, packet may be lost, arrive with different delay,
or even out of order. The purpose of a jitter buffer is to reondackets and buffer them long enough (but no longer than
necessary) so they can be sent to be decoded.

2.5 Acoustic Echo Canceller

In any hands-free communication system (Fig. 2.1), speech the remote end is played in the local loudspeaker, pratpag

in the room and is captured by the microphone. If the audidurad from the microphone is sent directly to the remote end,
then the remove user hears an echo of his voice. An acousticaaceller is designed to remove the acoustic echo béfore i
is sent to the remote end. It is important to understand tieaetho canceller is meant to improve the quality orrémeote
end.

2.6 Resampler

In some cases, it may be useful to convert audio from one sagnate to another. There are many reasons for that. It can
be for mixing streams that have different sampling ratesséipporting sampling rates that the soundcard doesn’tstidpr
transcoding, etc. That's why there is now a resampler thaauisof the Speex project. This resampler can be used to donve
between any two arbitrary rates (the ratio must only be amatinumber) and there is control over the quality/compyexi
tradeoff.

3 Compiling and Porting

Compiling Speex under UNIX/Linux or any other platform soped by autoconf (e.g. Win32/cygwin) is as easy as typing:

% ./ configure [options]
% make
% make install

The options supported by the Speex configure script are:

—prefix=<path> Specifies the base path for installing Speex (e.g. /usr)
—enable-shared/—disable-shared = Whether to compile shared libraries
—enable-static/—disable-static =~ Whether to compile static libraries

—disable-wideband Disable the wideband part of Speex (typically to save space)
—enable-valgrind Enable extra hits for valgrind for debugging purposes (douse by default)
—enable-sse Enable use of SSE instructions (x86/float only)

—enable-fixed-point Compile Speex for a processor that does not have a floatimg poit (FPU)
—enable-arm4-asm Enable assembly specific to the ARMv4 architecture (gcclonly
—enable-arm5e-asm Enable assembly specific to the ARMV5E architecture (gcg)onl
—enable-fixed-point-debug Use only for debugging the fixed-point code (very slow)
—enable-epic-48k Enable a special (and non-compatible) 4.8 kbps narrowbamterbroken in 1.1.x and 1.2beta)
—enable-ti-c55x Enable support for the TI C5x family

—enable-blackfin-asm Enable assembly specific to the Blackfin DSP architecture doty)

—enable-vorbis-psycho Make the encoder use the Vorbis psycho-acoustic model. i lisry experimental and may be
removed in the future.

3.1 Platforms

Speex is known to compile and work on a large number of arctites, both floating-point and fixed-point. In general, any
architecture that can natively compute the multiplicatidtwo signed 16-bit numbers (32-bit result) and runs at ficgant
clock rate (architecture-dependent) is capable of run8imeex. Architectures on which Speekxmsown to work (it probably
works on many others) are:

e Xx86 & x86-64
e Power

e SPARC

e ARM
Blackfin

Coldfire (68k family)
T1 C54xx & C55xx

10

3 Compiling and Porting

o Tl CHXxX

e TriMedia (experimental)
Operating systems on top of which Speex is known to work ohel(it probably works on many others):

e Linux

UClinux

MacOS X
e BSD
Other UNIX/POSIX variants

e Symbian

The source code directory include additional information éompiling on certain architectures or operating systéms
README.xxx files.

3.2 Porting and Optimising

Here are a few things to consider when porting or optimisipgeX for a new platform or an existing one.

3.2.1 CPU optimisation

The single that will affect the CPU usage of Speex the moshisther it is compiled for floating point or fixed-point. If you
CPU/DSP does not have a floating-point unit FPU, then congpdis fixed-point will be orders of magnitudes faster. If ¢her
is an FPU present, then it is important to test which versiofaster. On the x86 architecture, floating-poingenerally
faster, but not always. To compile Speex as fixed-point, yeedrto pass —fixed-point to the configure script or define the
FIXED_POINT macro for the compiler. As of 1.2beta3, it is npassible to disable the floating-point compatibility API,
which means that your code can link without a float emulatioraty. To do that configure with —disable-float-api or define
the DISABLE_FLOAT_API macro. Until the VBR feature is padtéo fixed-point, you will also need to configure with
—disable-vbr or define DISABLE_VBR.

Other important things to check on some DSP architectuees ar

o Make sure the cache is set to write-back mode

e If the chip has SRAM instead of cache, make sure as much catidata are in SRAM, rather than in RAM
If you are going to be writing assembly, then the followingétions arausually the first ones you should consider optimising:

efilter _meml6()
e iir_meml6()
e vg_nbest ()
e pitch _xcorr()
einterp_pitch()

The filtering functiond i | t er _meml6() andi i r_nmenl6() are implemented in the direct form Il transposed (DF2T).
However, for architectures based on multiply-accumul&tAC), DF2T requires frequent reload of the accumulator,chhi
can make the code very slow. For these architectures (eagkf3h and Coldfire), a better approach is to implement those
functions as direct form | (DF1), which is easier to expresterms of MAC. When doing that howevdtrjs important to
make sure that the DF1 implementation still behaves like theriginal DF2T behaviour when it comes to filter values
This is necessary because the filter is time-varrying and camspute exactly the same value (not counting machine riaghd

on any encoder or decoder.

11

3 Compiling and Porting

3.2.2 Memory optimisation

Memory optimisation is mainly something that should be adered for small embedded platforms. For PCs, Speex isdjrea

so tiny that it’s just not worth doing any of the things suggdshere. There are several ways to reduce the memory usage of
Speex, both in terms of code size and data size. For optighiside size, the trick is to first remove features you do notinee
Some examples of things that can easily be disaibigali don’t need themare:

e Wideband support (—disable-wideband)
e Support for stereo (removing stereo.c)
¢ VBR support (—disable-vbr or DISABLE_VBR)

e Static codebooks that are not needed for the bit-rates yousang (*_table.c files)

Speex also has several methods for allocating temporaysartwhen using a compiler that supports C99 properly (a8@7 2
Microsoft compilers don’t, but gcc does), it is best to defitddR_ ARRAYS. That makes use of the variable-size array featu
of C99. The next best is to define USE_ALLOCA so that Speex saralloca() to allocate the temporary arrays. Note that on
many systems, alloca() is buggy so it may not work. If none ARVARRAYS and USE_ALLOCA are defined, then Speex
falls back to allocating a large “scratch space” and dois@itn internal allocation. The main disadvantage of thigtsmh

is that it is wasteful. It needs to allocate enough stacktentorst case scenario (worst bit-rate, highest complaxit§ing,

...) and by default, the memory isn’t shared between meltgpicoder/decoder states. Still, if the “manual” allogatothe
only option left, there are a few things that can be improBgdoverriding the speex_alloc_scratch() call in os_suphoit

is possible to always return the same memory area for aéisstdh addition to that, by redefining the NB_ENC_STACK and
NB_DEC_STACK (or similar for wideband), it is possible tolpmallocate memory for a scenario that is known in advange.
In this case, it is important to measure the amount of menexyired for the specific sampling rate, bit-rate and cormifylex
level being used.

1in this case, one must be careful with threads

12

4 Command-line encoder/decoder

The base Speex distribution includes a command-line em¢sdeexencand decodersdpeexdex Those tools produce and
read Speex files encapsulated in the Ogg container. Althibigipossible to encapsulate Speex in any container, Odteis t
recommended container for files. This section describestbase the command line tools for Speex files in Ogg.

4.1 speexenc

Thespeexenditility is used to create Speex files from raw PCM or wave filesan be used by calling:
speexenc [options] input file output file

The value '-’ for input_file or output_file corresponds resipeely to stdin and stdout. The valid options are:

—narrowband (-n) Tell Speex to treat the input as narrowband (8 kHz). Thisesdfault

—wideband (-w) Tell Speex to treat the input as wideband (16 kHz)

—ultra-wideband (-u) Tell Speex to treat the input as “ultra-wideband” (32 kHz)

—quality n Set the encoding quality (0-10), default is 8

—bitrate n Encoding bit-rate (use bit-rate n or lower)

—vbr Enable VBR (Variable Bit-Rate), disabled by default

—abr n Enable ABR (Average Bit-Rate) at n kbps, disabled by default

—vad Enable VAD (Voice Activity Detection), disabled by default

—dtx Enable DTX (Discontinuous Transmission), disabled by dkfa

—nframes n Pack n frames in each Ogg packet (this saves space at loatbg}r

—comp n Set encoding speed/quality tradeoff. The higher the value the slower the encoding (default is 3)

-V Verbose operation, print bit-rate currently in use

—help (-h) Print the help

—version (-v) Print version information

Speex comments
—comment Add the given string as an extra comment. This may be usedpteuiimes.
—author Author of this track.

—title Title for this track.

Raw input options

—rate n Sampling rate for raw input
—stereo Consider raw input as stereo
—le Raw inputis little-endian

—be Raw inputis big-endian

—8bit Raw input is 8-bit unsigned
—16bit Raw input is 16-bit signed

13

4 Command-line encoder/decoder

4.2 speexdec
Thespeexdeditility is used to decode Speex files and can be used by calling
speexdec [options] speex file [output file]

The value ’-’ for input_file or output_file corresponds resjpeely to stdin and stdout. Also, when no output_file is sfied,
the file is played to the soundcard. The valid options are:

—enh enable post-filter (default)

—no-enh disable post-filter

—force-nb Force decoding in narrowband
—force-wb Force decoding in wideband
—force-uwb Force decoding in ultra-wideband
—mono Force decoding in mono

—stereo Force decoding in stereo

—rate n Force decoding at n Hz sampling rate
—packet-loss n Simulate n % random packet loss
-V Verbose operation, print bit-rate currently in use
—help (-h) Print the help

—version (-v) Print version information

14

5 Using the Speex Codec API (libspeex)

The libspeexlibrary contains all the functions for encoding and decgdipeech with the Speex codec. When linking on a
UNIX system, one must addspeex -Into the compiler command line. One important thing to knovhatlibspeex calls are
reentrant, but not thread-safe. That means that it is fine to use calls from many threads;dlig using the same state from
multiple threads must be protected by mutexesExamples of code can also be found in Appendix A and the cerapiPI
documentation is included in the Documentation sectiomefSpeex website (http://www.speex.org/).

5.1 Encoding

In order to encode speech using Speex, one first needs to:
#i ncl ude <speex/speex. h>
Then in the code, a Speex bit-packing struct must be deglaleag with a Speex encoder state:

SpeexBits bits;
voi d *enc_st ate;

The two are initialized by:

speex_bits init(&its);
enc_state = speex_encoder _init(&speex_nb_node);

For wideband codingspeex_nb_modeill be replaced byspeex_wb_modén most cases, you will need to know the frame
size used at the sampling rate you are using. You can get #hae in theframe_sizevariable (expressed isamples not
bytes) with:

speex_encoder _ctl (enc_st ate, SPEEX GET_FRAME_SI ZE, &f rane_si ze) ;

In practice frame_sizavill correspond to 20 ms when using 8, 16, or 32 kHz samplitg. réhere are many parameters that
can be set for the Speex encoder, but the most useful onedsittiey parameter that controls the quality vs bit-rateléwif.
This is set by:

speex_encoder _ctl (enc_state, SPEEX SET _QUALI TY, &qual i ty);

wherequalityis an integer value ranging from 0 to 10 (inclusively). Thepmiag between quality and bit-rate is described
in Fig. 9.2 for narrowband.
Once the initialization is done, for every input frame:

speex_bits_reset(&bits);
speex_encode_int(enc_state, input_frane, &bits);
nbBytes = speex_bits wite(&its, byte ptr, MAX NB BYTES);

whereinput_frames a(short*) pointing to the beginning of a speech frarhgte ptris a(char *) where the encoded frame
will be written, MAX_NB_BYTE® the maximum number of bytes that can be writtehyte _ptrwithout causing an overflow
andnbBytess the number of bytes actually written bgte ptr(the encoded size in bytes). Before calling speex_bitdevri
it is possible to find the number of bytes that need to be writiecallingspeex_bi t s_nbyt es(&bi t s) , which returns
a number of bytes.

It is still possible to use thepeex_encodeflinction, which takes &float *) for the audio. However, this would make an
eventual port to an FPU-less platform (like ARM) more coroaied. Internallyspeex_encode@ndspeex_encode_intfye
processed in the same way. Whether the encoder uses thepbikadrersion is only decided by the compile-time flags, ot a
the APl level.

After you're done with the encoding, free all resources with

speex_bits_destroy(&bits);
speex_encoder _destroy(enc_state);

That's about it for the encoder.

15

5 Using the Speex Codec ARlik{speex

5.2 Decoding

In order to decode speech using Speex, you first need to:
#i ncl ude <speex/speex. h>

You also need to declare a Speex bit-packing struct
SpeexBits bits;

and a Speex decoder state
voi d *dec_st at e;

The two are initialized by:

speex_bits_init(&its);
dec_state = speex_decoder _init(&speex_nb_node);

For wideband decodingpeex_nb_modeill be replaced byspeex_wb_modéf you need to obtain the size of the frames
that will be used by the decoder, you can get that value ifirthvee_sizevariable (expressed samples not bytes) with:

speex_decoder _ctl (dec_state, SPEEX GET_FRAME_SI ZE, &frane_si ze);
There is also a parameter that can be set for the decodehertmtnot to use a perceptual enhancer. This can be set by:
speex_decoder _ctl (dec_state, SPEEX SET ENH, &enh);

whereenhis an int with value 0 to have the enhancer disabled and 1 te hanabled. As of 1.2-betal, the default is now
to enable the enhancer.
Again, once the decoder initialization is done, for evegunframe:

speex_bits read fron(&its, input_bytes, nbBytes);
speex_decode_int(dec_state, &bits, output franme);

where input_bytes is &char *) containing the bit-stream data received for a fram#Bytess the size (in bytes) of that
bit-stream, anautput_frames a(short *) and points to the area where the decoded speech frame willitierww A NULL
value as the second argument indicates that we don’t haveithéor the current frame. When a frame is lost, the Speex
decoder will do its best to "guess" the correct signal.

As for the encoder, thepeex_decodefjinction can still be used, with @oat *) as the output for the audio. After you're
done with the decoding, free all resources with:

speex_bits_destroy(&bits);
speex_decoder _destroy(dec_state);

5.3 Codec Options (speex_* ctl)

Entities should not be multiplied beyond necessity — Wfilla Ockham.
Just because there’s an option for it doesn’t mean you hat@toit on — me.

The Speex encoder and decoder support many options andstedjuat can be accessed throughdpeex_encoder_cind
speex_decoder_dtinctions. These functions are similar to ibetl system call and their prototypes are:

voi d speex_encoder_ctl(void *encoder, int request, void *ptr);
voi d speex_decoder_ctl(void *encoder, int request, void *ptr);

Despite those functions, the defaults are usually good famynapplications andptional settings should only be used
when one understands them and knows that they are needed® common error is to attempt to set many unnecessary
settings.

Here is a list of the values allowed for the requests. Someapply to the encoder or the decoder. Because the last argqume
is of typevoi d *,the_ctl () functions arenot type safe and shoud thus be used with care. The typ&_i nt 32_t is
the same as the CIt 32_t type.

SPEEX_SET_ENH% Set perceptual enhancer to on (1) or off @px_i nt 32_t, default is on)

16

5 Using the Speex Codec ARlik{speex

SPEEX_GET_ENHI Get perceptual enhancer statspX_i nt 32_t)

SPEEX_GET_FRAME_SIZE Getthe number of samples per frame for the current megg (i nt 32_t)
SPEEX_SET_QUALITY T Setthe encoder speech qualigypk_i nt 32_t from 0 to 10, default is 8)
SPEEX_GET_QUALITY T Getthe current encoder speech quaktyX_i nt 32_t from 0 to 10)
SPEEX_SET_MODETY Setthe mode number, as specified in the RTP spex (i nt 32_t)
SPEEX_GET_MODET? Get the current mode number, as specified in the RTP sec § nt 32_t)
SPEEX_SET_VBRT Set variable bit-rate (VBR) to on (1) or off (3 i9x_i nt 32_t , default is off)
SPEEX_GET_VBRT Get variable bit-rate (VBR) statusgx_i nt 32_t)
SPEEX_SET_VBR_QUALITY t Setthe encoder VBR speech quality (float 0.0 to 10.0, deifa8l0)
SPEEX_GET_VBR_QUALITY T Get the current encoder VBR speech quality (float O to 10)
SPEEX_SET_COMPLEXITYt Setthe CPU resources allowed for the encoslpk(i nt 32_t from 1 to 10, default is 2)

SPEEX_GET_COMPLEXITYt Getthe CPU resources allowed for the encodex(_i nt 32_t from 1 to 10, default is
2)

SPEEX_SET_BITRATET Set the bit-rate to use the closest value not exceedingpttaertergpx_i nt 32_t in bits per
second)

SPEEX GET_BITRATE Get the current bit-rate in uss§x_i nt 32_t in bits per second)
SPEEX_SET_SAMPLING_RATE Set real sampling ratspx_i nt 32_t in Hz)

SPEEX GET_SAMPLING_RATE Getreal sampling ratespx_i nt 32_t in Hz)

SPEEX RESET_STATE Reset the encoder/decoder state to its original statejmieall memories (no argument)
SPEEX_SET_VADT Set voice activity detection (VAD) to on (1) or off (03x_i nt 32_t, default is off)
SPEEX_GET_VADT Get voice activity detection (VAD) statusfx_i nt 32_t)

SPEEX_SET_DTXt Set discontinuous transmission (DTX) to on (1) or off @pX_i nt 32_t, default is off)
SPEEX_GET_DTXTt Get discontinuous transmission (DTX) statepX_i nt 32_t)

SPEEX_SET_ABRT Set average bit-rate (ABR) to a value n in bits per secepo (i nt 32_t in bits per second)
SPEEX_GET_ABRT Get average bit-rate (ABR) settingx_i nt 32_t in bits per second)

SPEEX_SET_PLC_TUNINGT Tellthe encoder to optimize encoding for a certain peagmbf packet losspx_i nt 32_t
in percent)

SPEEX_GET_PLC_TUNINGTt Get the current tuning of the encoder for PISpk_i nt 32_t in percent)

SPEEX_SET_VBR_MAX_BITRATE T Set the maximum bit-rate allowed in VBR operati@pX_i nt 32_t in bits per
second)

SPEEX_GET_VBR_MAX_BITRATE t Get the current maximum bit-rate allowed in VBR operatispX_i nt 32_t in
bits per second)

SPEEX_ SET _HIGHPASS Set the high-pass filter on (1) or off (3f§x_i nt 32_t, defaultis on)
SPEEX GET_HIGHPASS Get the current high-pass filter statgpg_i nt 32_t)
t applies only to the encoder

T applies only to the decoder

17

5 Using the Speex Codec ARlik{speex

5.4 Mode queries

Speex modes have a query system similar to the speex_enctaard speex_decoder_ctl calls. Since modes are regd-onl
it is only possible to get information about a particular reo@he function used to do that is:

voi d speex_node_quer y(SpeexMbde *node, int request, void *ptr);

The admissible values for request are (unless otherwisg tiat values are returned throygth):

SPEEX_MODE_FRAME_SIZE Get the frame size (in samples) for the mode
SPEEX_SUBMODE_BITRATE Get the bit-rate for a submode number specified thrquigfinteger in bps).

5.5 Packing and in-band signalling

Sometimes it is desirable to pack more than one frame perepéakother basic unit of storage). The proper way to do it is
to call speex_encod¥d times before writing the stream with speex_bits_write. dses where the number of frames is not
determined by an out-of-band mechanism, it is possiblediude a terminator code. That terminator consists of the ddd
(decimal) encoded with 5 bits, as shown in Table 9.2. Notédkaf version 1.0.2, calling speex_hits_write automdyica
inserts the terminator so as to fill the last byte. This dagemblves any overhead and makes sure Speex can alwayg detec
when there is no more frame in a packet.

It is also possible to send in-band “messages” to the otlder shll these messages are encoded as “pseudo-frames” of
mode 14 which contain a 4-bit message type code, followetidytessage. Table 5.1 lists the available codes, their mgeani
and the size of the message that follows. Most of these messag requests that are sent to the encoder or decoder on the
other end, which is free to comply or ignore them. By defalltin-band messages are ignored.

| Code| Size (bits)] Content |
0 1 Asks decoder to set perceptual enhancement off (0) or on(1)
1 1 Asks (if 1) the encoder to be less “agressive” due to high peldss
2 4 Asks encoder to switch to mode N
3 4 Asks encoder to switch to mode N for low-band
4 4 Asks encoder to switch to mode N for high-band
5 4 Asks encoder to switch to quality N for VBR
6 4 Request acknowloedge (0=no, 1=all, 2=only for in-band)data
7 4 Asks encoder to set CBR (0), VAD(1), DTX(3), VBR(5), VBR+DTR
8 8 Transmit (8-bit) character to the other end
9 8 Intensity stereo information
10 16 Announce maximum bit-rate acceptable (N in bytes/second)
11 16 reserved
12 32 Acknowledge receiving packet N
13 32 reserved
14 64 reserved
15 64 reserved

Table 5.1: In-band signalling codes

Finally, applications may define custom in-band messagag usode 13. The size of the message in bytes is encoded with
5 bits, so that the decoder can skip it if it doesn’t know hovnterpret it.

18

6 Speech Processing API (libspeexdsp)

As of version 1.2beta3, the non-codec parts of the Speexagackre now in a separate library callibbdpeexdspThis library

includes the preprocessor, the acoustic echo cancekgjittér buffer, and the resampler. In a UNIX environmentadh be
linked into a program by addindgspeexdsp -Into the compiler command line. Just like for libspeksspeexdsp calls are
reentrant, but not thread-safe. That means that it is fine to use calls from many threads;dilig using the same state from
multiple threads must be protected by mutexes

6.1 Preprocessor

In order to use the Speex preprocessor, you first need to:
#i ncl ude <speex/speex_preprocess. h>
Then, a preprocessor state can be created as:

SpeexPreprocessState *preprocess_state = speex_preprocess_state_init(frame_size,
sampling_rate);

and it is recommended to use the same valué fame_si ze as is used by the encoder (2%).
For each input frame, you need to call:

speex_preprocess_run(preprocess_state, audio_frane);

whereaudi o_f r ane is used both as input and output. In cases where the outpia sutbt useful for a certain frame, it is
possible to use instead:

speex_preprocess_estimate_updat e(preprocess_state, audio_framne);

This call will update all the preprocessor internal statéakdes without computing the output audio, thus savings@RU
cycles.
The behaviour of the preprocessor can be changed using:

speex_preprocess_ctl (preprocess_state, request, ptr);

which is used in the same way as the encoder and decoder lequiv@ptions are listed in Section 6.1.1.
The preprocessor state can be destroyed using:

speex_preprocess_state_destroy(preprocess_state);

6.1.1 Preprocessor options

As with the codec, the preprocessor also has options thdieaantrolled using an ioctl()-like call. The availableiops are:
SPEEX PREPROCESS_SET_DENOISE Turns denoising on(1) or off(2spx_i nt 32_t)

SPEEX PREPROCESS GET_DENOISE Getdenoising statuspx_i nt 32_t)

SPEEX PREPROCESS _SET_AGC Turns automatic gain control (AGC) on(1) or off(Fgx_i nt 32_t)
SPEEX_PREPROCESS_GET_AGC Get AGC statusgpx_i nt 32_t)

SPEEX PREPROCESS SET _VAD Turns voice activity detector (VAD) on(1) or off(25px_i nt 32_t)
SPEEX_PREPROCESS_GET_VAD Get VAD status§px_i nt 32_t)

SPEEX_PREPROCESS_SET_AGC_LEVEL

SPEEX_PREPROCESS_GET_AGC_LEVEL

19

6 Speech Processing ARikspeexdsp

SPEEX PREPROCESS SET_DEREVERB Turns reverberation removal on(1) or off(Zy(x_i nt 32_t)
SPEEX PREPROCESS GET_DEREVERB Get reverberation removal statispik i nt 32_t)

SPEEX PREPROCESS SET_DEREVERB_LEVEL Notworking yet, do not use

SPEEX PREPROCESS GET_DEREVERB_LEVEL Notworking yet, do not use

SPEEX PREPROCESS SET_DEREVERB_DECAY Notworking yet, do not use

SPEEX PREPROCESS GET_DEREVERB_DECAY Not working yet, do not use
SPEEX_PREPROCESS_SET_PROB_START

SPEEX_PREPROCESS_GET_PROB_START

SPEEX_PREPROCESS_SET_PROB_CONTINUE
SPEEX_PREPROCESS_GET_PROB_CONTINUE

SPEEX_ PREPROCESS_SET_NOISE_SUPPRESS Setmaximum attenuation of the noise in dB (negatipg_i nt 32_t
)

SPEEX_PREPROCESS GET_NOISE_SUPPRESS Get maximum attenuation of the noise in dB (negadip&_i nt 32_t
)

SPEEX PREPROCESS SET_ECHO_SUPPRESS Set maximum attenuation of the residual echoin dB (negafve i nt 32_t
)

SPEEX PREPROCESS GET_ECHO_SUPPRESS Set maximum attenuation of the residual echo in dB (negafime i nt 32_t
)

SPEEX PREPROCESS SET_ECHO_SUPPRESS_ACTIVE Set maximum attenuation of the echo in dB when near
end is active (negativepx_i nt 32_t)

SPEEX PREPROCESS GET_ECHO_SUPPRESS ACTIVE Set maximum attenuation of the echo in dB when near
end is active (negativepx_i nt 32_t)

SPEEX_PREPROCESS SET_ECHO_STATE Set the associated echo canceller for residual echo sigipme®ointer
or NULL for no residual echo suppression)

SPEEX_PREPROCESS GET_ECHO_STATE Get the associated echo canceller (pointer)

6.2 Echo Cancellation
The Speex library now includes an echo cancellation algarisuitable for Acoustic Echo Cancellation (AEC). In order t
use the echo canceller, you first need to
#i ncl ude <speex/speex_echo. h>
Then, an echo canceller state can be created by:
SpeexEchoSt ate *recho_state = speex_echo _state init(frane_size, filter_length);

wheref r ane_si ze is the amount of data (in samples) you want to process at artkid t er _| engt h is the length
(in samples) of the echo cancelling filter you want to useo(kisown agdail length). It is recommended to use a frame size in
the order of 20 ms (or equal to the codec frame size) and maketss easy to perform an FFT of that size (powers of two are
better than prime sizes). The recommended tail length iscapately the third of the room reverberation time. Forrayée,
in a small room, reverberation time is in the order of 300 ros &ail length of 100 ms is a good choice (800 samples at 8000
Hz sampling rate).

Once the echo canceller state is created, audio can be peacey:

speex_echo_cancel | ati on(echo_state, input_frane, echo_frame, output_frame);

20

6 Speech Processing ARikspeexdsp

wherei nput _fran®e is the audio as captured by the microphoeeho_f r ane is the signal that was played in the
speaker (and needs to be removed) antlput _f r ane is the signal with echo removed.

One important thing to keep in mind is the relationship bemienput _f r anme andecho_f r ane. It is important that,
at any time, any echo that is present in the input has alreeey bent to the echo cancelleraho_f r ane. In other words,
the echo canceller cannot remove a signal that it hasn'teagived. On the other hand, the delay between the inputlsigna
and the echo signal must be small enough because otherwis# tiee echo cancellation filter is inefficient. In the ideake,
you code would look like:

wite to_soundcard(echo frane, frame_size);
read_from soundcard(i nput _franme, frane_size);
speex_echo_cancel | ati on(echo_state, input_franme, echo_frame, output_frame);

If you wish to further reduce the echo present in the signal, gan do so by associating the echo canceller to the prepro-
cessor (see Section 6.1). This is done by calling:

speex_preprocess_ctl (preprocess_state, SPEEX PREPROCESS SET ECHO STATE echo_state);

in the initialisation.

As of version 1.2-beta2, there is an alternative, simplertABt can be used instead gffeex_echo_cancellationfvhen
audio capture and playback are handled asynchronouslyitedifferent threads or using thmll() or select()system call),
it can be difficult to keep track of what input_frame comeshwithat echo_frame. Instead, the playback comtext/thread ca
simply call:

speex_echo_pl ayback(echo_state, echo_frane);
every time an audio frame is played. Then, the capture ctlttiexad calls:
speex_echo_capture(echo_state, input_frame, output frame);

for every frame captured. Internallgpeex_echo_playbackgmply buffers the playback frame so it can be used by
speex_echo_capturet call speex_echo_cancel(A side effect of using this alternate API is that the playbaadio is
delayed by two frames, which is the normal delay caused bgdhadcard. When capture and playback are already synchro-
nised,speex_echo_cancellationg)preferable since it gives better control on the exacttifgaho timing.

The echo cancellation state can be destroyed with:

speex_echo_st ate_destroy(echo_state);
It is also possible to reset the state of the echo cancelliéican be reused without the need to create another state with

speex_echo_state reset(echo_state);

6.2.1 Troubleshooting

There are several things that may prevent the echo canéellarworking properly. One of them is a bug (or something
suboptimal) in the code, but there are many others you shoauisider first

e Using a different soundcard to do the capture and plabadkmilwork, regardless of what you may think. The only
exception to that is if the two cards can be made to have theipting clock “locked” on the same clock source. If not,
the clocks will always have a small amount of drift, whichlyitevent the echo canceller from adapting.

e The delay between the record and playback signals must bmalinrAny signal played has to “appear” on the playback
(far end) signal slightly before the echo canceller “seest the near end signal, but excessive delay means thatfpart o
the filter length is wasted. In the worst situations, the yiedasuch that it is longer than the filter length, in which case
no echo can be cancelled.

e When it comes to echo tail length (filter length), longer isthbetter. Actually, the longer the tail length, the longter
takes for the filter to adapt. Of course, a tail length thapésghort will not cancel enough echo, but the most common
problem seen is that people set a very long tail length andweeder why no echo is being cancelled.

e Non-linear distortion cannot (by definition) be modeled bg linear adaptive filter used in the echo canceller and thus
cannot be cancelled. Use good audio gear and avoid satudifping.

21

6 Speech Processing ARikspeexdsp

Also useful is readingecho Cancellation Demystifiday Alexey Frunzé, which explains the fundamental principles of echo
cancellation. The details of the algorithm described inaftécle are different, but the general ideas of echo caateti
through adaptive filters are the same.

As of version 1.2beta2, a nescho_di agnost i c. mtoolis included in the source distribution. The first stefpisefine
DUMP_ECHO_CANCEL_DATA during the build. This causes thé@canceller to automatically save the near-end, far-end
and output signals to files (aec_rec.sw aec_play.sw andaesw). These are exactly what the AEC receives and outputs
From there, it is necessary to start Octave and type:

echo_di agnostic(’'aec_rec.sw, 'aec_play.sw, 'aec_diagnostic.sw , 1024);

The value of 1024 is the filter length and can be changed. Ti#ilee some (hopefully) useful messages printed and echo
cancelled audio will be saved to aec_diagnostic.sw . If ¢éllahoutput is bad (almost no cancellation) then there ibginty
problem with the playback or recording process.

6.3 Jitter Buffer

The jitter buffer can be enabled by including:
#i ncl ude <speex/speex_jitter. h>

and a new jitter buffer state can be initialised by:
JitterBuffer *state = jitter _buffer_init(step);

where thest ep argumentis the default time step (in timestamp units) useddjusting the delay and doing concealment.
A value of 1 is always correct, but higher values may be morwenient sometimes. For example, if you are only able to do
concealment on 20ms frames, there is no point in the jittéebasking you to do it on one sample. Another example is that
for video, it makes no sense to adjust the delay by less thalhfagme. The value provided can always be changed at a later
time.

The jitter buffer API is based on thl t t er Buf f er Packet type, which is defined as:

typedef struct ({

char *dat a; /= Data bytes contained in the packet =/
spx_uint32_t |en; [+ Length of the packet in bytes =*/

spx_uint32 t tinestanp; /x* Tinestanp for the packet =*/

spx_ui nt32_t span; [+ Time covered by the packet (timestanp units) =/

} JitterBufferPacket;

As an example, for audio the timestamp field would be what taiobd from the RTP timestamp field and the span would
be the number of samples that are encoded in the packet. Eex3$@rrowband, span would be 160 if only one frame is
included in the packet.

When a packet arrives, it need to be inserter into the jittdfieb by:

JitterBuf ferPacket packet;
[+ Fill in each field in the packet struct =/
jitter_buffer_put(state, &packet);

When the decoder is ready to decode a packet the packet tabdatecan be obtained by:

int start_offset;
err = jitter_buffer_get(state, &packet, desired_span, &start_offset);

Ifjitter_buffer_put() andjitter_buffer_get() are called from different threads, thgou need to protect
the jitter buffer state with a mutex.

Because the jitter buffer is designed not to use an expiiir, it needs to be told about the time explicitly. This isxdo
by calling:

jitter _buffer_tick(state);

This needs to be done periodically in the playing threads Till be the last jitter buffer call before going to sleep iun
more data is played back). In some cases, it may be prefdmbe

Lhttp://www.embeddedstar.com/articles/2003/7/arsi6@80720-1.html

22

6 Speech Processing ARikspeexdsp

jitter _buffer_remaining_span(state, renaining);

The second argument is used to specify that we are still hgldata that has not been written to the playback device.
For instance, if 256 samples were needed by the soundcarcifisgd bydesi red_span), butji tter _buffer get()
returned 320 samples, we would havemai ni ng=64.

6.4 Resampler

Speex includes a resampling modules. To make use of the pésaihis necessary to include its header file:
#i ncl ude <speex/ speex_resanpl er. h>
For each stream that is to be resampled, it is necessarydate@eesampler state with:

SpeexResanpl er St at e *resanpl er;
resanmpl er = speex_resanpler_init(nb_channels, input_rate, output_rate, quality, &
err);

where nb_channels is the number of channels that will be (es&ter interleaved or non-interleaved), input_rate & th
sampling rate of the input stream, output_rate is the sangphte of the output stream and quality is the requestedtgual
setting (0 to 10). The quality parameter is useful for callitrg the quality/complexity/latency tradeoff. Using aghier
quality setting means less noise/aliasing, a higher caxitpland a higher latency. Usually, a quality of 3 is accepgdbr
most desktop uses and quality 10 is mostly recommended daaymtio work. Quality 0 usually has a decent sound (certainly
better than using linear interpolation resampling), btifats may be heard.

The actual resampling is performed using

err = speex_resanpler_process_int(resanpler, channellD, in, & n_length, out, &
out | ength);

where channellD is the ID of the channel to be processed. Fam stream, use 0. Tl pointer points to the first sample
of the input buffer for the selected channel and points to the first sample of the output. The size of the inpat autput
buffers are specified bip_lengthandout_lengthrespectively. Upon completion, these values are replagedeonumber of
samples read and written by the resampler. Unless an ercargeither all input samples will be read or all output skasip
will be written to (or both). For floating-point samples, fliaction speex_resampler_process_float() behaves slynila

It is also possible to process multiple channels at once.

To be continued...

6.5 Ring Buffer

Put some stuff there...

23

7 Formats and standards

Speex can encode speech in both narrowband and widebandauidgs different bit-rates. However, not all featureschee
to be supported by a certain implementation or device. Ieiota be called “Speex compatible” (whatever that means), an
implementation must implement at least a basic set of featur

At the minimum, all narrowband modes of operation MUST bepsurfed at the decoder. This includes the decoding of
a wideband bit-stream by the narrowband dechdémpresent, a wideband decoder MUST be able to decode awlaara
stream, and MAY either be able to decode all wideband modé&® @ble to decode the embedded narrowband part of all
modes (which includes ignoring the high-band bits).

For encoders, at least one narrowband or wideband mode M@STuported. The main reason why all encoding modes
do not have to be supported is that some platforms may notlb@é@bandle the complexity of encoding in some modes.

7.1 RTP Payload Format

The RTP payload draftis included in appendix C and the latasion is available dtt t p: / / www. speex. or g/ drafts/
| at est . This draft has been sent (2003/02/26) to the Internet Exaging Task Force (IETF) and will be discussed at the
March 18th meeting in San Francisco.

7.2 MIME Type

For now, you should use the MIME type audio/x-speex for SpaeRgg. We will apply for typeaudi o/ speex in the near
future.

7.3 Ogg file format

Speex bit-streams can be stored in Ogg files. In this casérs¢hpacket of the Ogg file contains the Speex header desknbe
table 7.1. All integer fields in the headers are stored ds-Ethdian. Thespeex_st ri ng field must contain theSpeex ”
(with 3 trailing spaces), which identifies the bit-strearheText fieldspeex_ver si on contains the version of Speex that
encoded the file. For now, refer to speex_header.[ch] foentdp. Thebeginning of streanfb_o_s) flag is set to 1 for the
header. The header packet Ipgcket no=0 andgr anul epos=0.

The second packet contains the Speex comment header. Thatfosed is the Vorbis comment format described here:
http://www.xiph.org/ogg/vorbis/doc/v-comment.htmlhi packet hapacket no=1 andgr anul epos=0.

The third and subsequent packets each contain one or maréardound in header) Speex frames. These are identified
with packet no starting from 2 and thgr anul epos is the number of the last sample encoded in that packet. Bhefa
these packets has tkad of streanfe_o_s) flag is set to 1.

1The wideband bit-stream contains an embedded narrowb&str&am which can be decoded alone

24

7 Formats and standards

Field | Type | Size]
speex_string char[] | 8
speex_version char[] | 20

speex_version_id int 4
header_size int 4

rate int 4

mode int 4
mode_bitstream_version int 4
nb_channels int 4

bitrate int 4
frame_size int 4

vbr int 4

frames_per_packet int 4
extra_headers int 4
reservedl int 4
reserved2 int 4

Table 7.1: Ogg/Speex header packet

25

8 Introduction to CELP Coding

Do not meddle in the affairs of poles, for they are subtle amidlgto leave the unit circle.

Speex is based on CELP, which stands for Code Excited Lineatid®ion. This section attempts to introduce the prirespl
behind CELP, so if you are already familiar with CELP, you sarfely skip to section 9. The CELP technique is based on
three ideas:

1. The use of a linear prediction (LP) model to model the vireait
2. The use of (adaptive and fixed) codebook entries as ingaité¢ion) of the LP model

3. The search performed in closed-loop in a “perceptuallighted domain”

This section describes the basic ideas behind CELP. Thi#l ia work in progress.

8.1 Source-Filter Model of Speech Prediction

The source-filter model of speech production assumes thabital cords are the source of spectrally flat sound (theadhani
signal), and that the vocal tract acts as a filter to spegtshipe the various sounds of speech. While still an apptom,
the model is widely used in speech coding because of its giitydlts use is also the reason why most speech codecsXSpee
included) perform badly on music signals. The different pdroes can be distinguished by their excitation (source) and
spectral shape (filter). Voiced sounds (e.g. vowels) hawxaitation signal that is periodic and that can be approtechly
an impulse train in the time domain or by regularly-spacetmaics in the frequency domain. On the other hand, frieativ
(such asthe "s", "sh" and "f* sounds) have an excitationaditirat is similar to white Gaussian noise. So called voiafives
(such as "z" and "v") have excitation signal composed of ambaic part and a noisy part.

The source-filter model is usually tied with the use of Lingaadiction. The CELP model is based on source-filter model,
as can be seen from the CELP decoder illustrated in Figure 8.1

8.2 Linear Prediction (LPC)

Linear prediction is at the base of many speech coding tgcdesi including CELP. The idea behind it is to predict thaalg
x[n] using a linear combination of its past samples:

N
ylnj = > ax(n—i]
2
wherey|n| is the linear prediction af[n]. The prediction error is thus given by:
N .
e[n] = x[n] — y[n] = x[n] — _zia@ x[n—i]
i=

The goal of the LPC analysis is to find the best predictionfadentsa; which minimize the quadratic error function:

L-1 , Lt N B
E= n; [e[n]]” = nZO [x[n] - i;aix[n— ']]

That can be done by making all derivativ% equal to zero:

26

8 Introduction to CELP Coding

Fixed codebook

~

Fixed codebook gain

11

Synthesis
Excitation fier 1/A(2)

e

Adaptive codebook

e[n-T]

Adaptive codebook gain

4

Delay =

Past subframe

Figure 8.1: The CELP model of speech synthesis (decoder)

For an ordeN filter, the filter coefficients; are found by solving the systelix N linear systenRa =r, where

RO) R - RIN—1)
R1) RO - RIN-2)
R= : : :
RN-1) RN-2) - R
R(1)
R(2)
r= :

R(N)

with R(m), the auto-correlation of the signgh|, computed as:

N-1

R(m) = ; X[i]x[i —m|

BecauseR is Hermitian Toeplitz, the Levinson-Durbin algorithm cam lsed, making the solution to the probI@f‘r@Nz)
instead of’ (N3). Also, it can be proven that all the rootsA(fz) are within the unit circle, which means thatA(z) is always
stable. This is in theory; in practice because of finite @ieai, there are two commonly used techniques to make suravee h
a stable filter. First, we multiplR(0) by a number slightly above one (such as 1.0001), which isvatpnt to adding noise
to the signal. Also, we can apply a window to the auto-coti@ha which is equivalent to filtering in the frequency domai
reducing sharp resonances.

8.3 Pitch Prediction

During voiced segments, the speech signal is periodic, isgoibssible to take advantage of that property by approximgat
the excitation signad[n] by a gain times the past of the excitation:

e[n] ~ p[n] = Beln—T],

whereT is the pitch periodp is the pitch gain. We call that long-term prediction sincedxcitation is predicted fromjn — T]
with T > N.

27

8 Introduction to CELP Coding

30 A T T T T T T T
Speech signal

| LPC synthesis filter

[Reference shaping --------

20 | R

10 i,,..,‘——,‘_

Response (dB)

-107\‘\“‘ |

LT ‘

1l ‘
(i b
\ v WH\ ‘“‘\‘\ ‘w(‘ RN ‘\ I |

-2

o
3:

M\ ‘\\ I
(s

| \| I
‘4“\‘““ HV“ ‘”‘4‘ il |
|
-40 1 1 li 1 1 1 1

0 500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)

-3l

o

Figure 8.2: Standard noise shaping in CELP. Arbitrary ysaiset.

8.4 Innovation Codebook

The final excitatiore[n] will be the sum of the pitch prediction and amovationsignalc[n] taken from a fixed codebook,
hence the nam€odeExcited Linear Prediction. The final excitation is given by

e[n] = p[n]+c[n] = Beln—T]+c[n] .
The quantization o€[n] is where most of the bits in a CELP codec are allocated. lesgmts the information that couldn’t
be obtained either from linear prediction or pitch prediatiln thez-domain we can represent the final sighék) as

.
X@= Aa-pz

8.5 Noise Weighting

Most (if not all) modern audio codecs attempt to “shape” thies@é so that it appears mostly in the frequency regions where
the ear cannot detect it. For example, the ear is more tdleyamise in parts of the spectrum that are loudernd versa
In order to maximize speech quality, CELP codecs minimieatiean square of the error (noise) in the perceptually weight
domain. This means that a perceptual noise weighting ¥M&) is applied to the error signal in the encoder. In most CELP
codecsW(z) is a pole-zero weighting filter derived from the linear prigin coefficients (LPC), generally using bandwidth
expansion. Let the spectral envelope be represented bytitleesis filter YA(z), CELP codecs typically derive the noise
weighting filter as

Alz/y)

V= R
wherey; = 0.9 andy, = 0.6 in the Speex reference implementation. If a fikér) has (complex) poles g in the z-plane,
the filterA(z/y) will have its poles ap; = yp;i, making it a flatter version oA(z).

The weighting filter is applied to the error signal used toirnjte the codebook search through analysis-by-synthesis
(AbS). This results in a spectral shape of the noise thatstémwlards YW(z). While the simplicity of the model has been
an important reason for the success of CELP, it remaindit{al is a very rough approximation for the perceptually optimal
noise weighting function. Fig. 8.2 illustrates the noisemihg that results from Eq. 8.1. Throughout this paper, \ier te
W(2) as the noise weighting filter and tg\W(z) as the noise shaping filter (or curve).

(8.1)

8.6 Analysis-by-Synthesis

One of the main principles behind CELP is called AnalysisSynthesis (AbS), meaning that the encoding (analysis) is
performed by perceptually optimising the decoded (synshsggnal in a closed loop. In theory, the best CELP streamlavo

28

8 Introduction to CELP Coding

be produced by trying all possible bit combinations andciglg the one that produces the best-sounding decodedl.signa
This is obviously not possible in practice for two reasohs:iequired complexity is beyond any currently availablelhare

and the “best sounding” selection criterion implies a hufigtaner.
In order to achieve real-time encoding using limited conmutesources, the CELP optimisation is broken down into

smaller, more manageable, sequential searches usingrteppeal weighting function described earlier.

29

9 Speex narrowband mode

This section looks at how Speex works for narrowband (8 kiizdimg rate) operation. The frame size for this mode is 20 ms,
corresponding to 160 samples. Each frame is also subdivided sub-frames of 40 samples each.
Also many design decisions were based on the original goalsssumptions:

e Minimizing the amount of information extracted from pasirfres (for robustness to packet loss)
e Dynamically-selectable codebooks (LSP, pitch and inriomt

e sub-vector fixed (innovation) codebooks

9.1 Whole-Frame Analysis

In narrowband, Speex frames are 20 ms long (160 samples)raraibdivided in 4 sub-frames of 5 ms each (40 samples).
For most narrowband bit-rates (8 kbps and above), the omnpeters encoded at the frame level are the Line Spectral Pai
(LSP) and a global excitation ga@firame, @s shown in Fig. 9.1. All other parameters are encoded atuhdrame level.

Linear prediction analysis is performed once per framegiamasymmetric Hamming window centered on the fourth sub-
frame. Because linear prediction coefficients (LPC) arerolotist to quantization, they are first are converted to lpexsal
pairs (LSP). The LSP’s are considered to be associated #tsab-frames and the LSP’s associated to the first 3 sub-frames
are linearly interpolated using the current and previouB t8efficients. The LSP coefficients and converted back ta Bt
filter A(z). The non-quantized interpolated filter is denoféd) and can be used for the weighting fili&f(z) because it does
not need to be available to the decoder.

To make Speex more robust to packet loss, no prediction igegjgn the LSP coefficients prior to quantization. The LSPs
are encoded using vector quantizatin (VQ) with 30 bits fghleir quality modes and 18 bits for lower quality.

9.2 Sub-Frame Analysis-by-Synthesis

The analysis-by-synthesis (AbS) encoder loop is desciibEdy. 9.2. There are three main aspects where Speex saymifjc
differs from most other CELP codecs. First, while most ré¢&BLP codecs make use of fractional pitch estimation with a
single gain, Speex uses an integer to encode the pitch pdnibdises a 3-tap predictor (3 gains). The adaptive codebook
contributione,[n] can thus be expressed as:

en=goen—T—1]+0g1e[n—T]+geln—T+1] (9.1)

wheregp, g1 andg, are the jointly quantized pitch gains aefd] is the codec excitation memory. It is worth noting that when
the pitch is smaller than the sub-frame size, we repeat thitgation at a period’. For example, when—T +1> 0, we
usen— 2T + 1 instead. In most modes, the pitch period is encoded withs7itithe[17, 144 range and th¢; coefficients
are vector-quantized using 7 bits at higher bit-rates (Ifskimrrowband and above) and 5 bits at lower bit-rates (1% kbp
narrowband and below).

speech
frame

LPC

vQ [—

—
Y
-
9
v

v
g/

8 frame »|quantize & frame

Figure 9.1: Frame open-loop analysis

30

9 Speex narrowband mode

speech
sub-frame

'

null
excitation
3-tap Adaptive
gain < codebook
— —p 2 - - - = =
z 0 pitch AbS loop
N 2 ~
g suby g sub;
— A(z) > —Z Y —>f Quantize —>f
w (Z) g frame
v
1 . o
———— | gain normalization
g frame g subf
< W(z) — Fixed
Yl (z) codebook
A

— = X0 mome

innovation AbS loop

Figure 9.2: Analysis-by-synthesis closed-loop optim@abn a sub-frame.

31

9 Speex narrowband mode

Many current CELP codecs use moving average (MA) predidtancode the fixed codebook gain. This provides slightly
better coding at the expense of introducing a dependencyexiocpisly encoded frames. A second difference is that Speex
encodes the fixed codebook gain as the product of the glob#héan gaingsrame With a sub-frame gain correctioggyp .

This increases robustness to packet loss by eliminatingnteeframe dependency. The sub-frame gain correctionds@ed
before the fixed codebook is searched (not closed-loop argtihand uses between 0 and 3 bits per sub-frame, depending o
the bit-rate.

The third difference is that Speex uses sub-vector qudittizaf the innovation (fixed codebook) signal instead of an
algebraic codebook. Each sub-frame is divided into sultbeve®f lengths ranging between 5 and 20 samples. Each sub-
vector is chosen from a bitrate-dependent codebook andtasctors are concatenated to form a sub-frame. As an dgamp
the 3.95 kbps mode uses a sub-vector size of 20 samples widnti2s in the codebook (5 bits). This means that the
innovation is encoded with 10 bits per sub-frame, or 2000 Bpsthe other hand, the 18.2 kbps mode uses a sub-vector size
of 5 samples with 256 entries in the codebook (8 bits), sorthevation uses 64 bits per sub-frame, or 12800 bps.

9.3 Bit allocation

There are 7 different narrowband bit-rates defined for Speanging from 250 bps to 24.6 kbps, although the modes below
5.9 kbps should not be used for speech. The bit-allocatiomdch mode is detailed in table 9.1. Each frame starts with
the mode ID encoded with 4 bits which allows a range from 0 totidugh only the first 7 values are used (the others are
reserved). The parameters are listed in the table in the trdg are packed in the bit-stream. All frame-based pararsetre
packed before sub-frame parameters. The parameters fotagncgub-frame are all packed before the following sulriea

is packed. Note that the “OL” in the parameter descriptiomnsethat the parameter is an open loop estimation based on the
whole frame.

| Parameter |Updateratef 0] 1 [2 | 3 | 4 | 5 | 6 [7 | 8]
Wideband bit frame 1|1 1 1 1 1 1 1 1
Mode ID frame 41 4 4 4 4 4 4 4 4
LSP frame 0|18| 18 | 18 | 18 | 30 | 30 | 30 | 18
OL pitch frame o 7 7 0 0 0 0 0 7
OL pitch gain frame 0| 4 0 0 0 0 0 0 4
OL Exc gain frame 05 5 5 5 5 5 5 5
Fine pitch sub-frame | 0 | O 0 7 7 7 7 7 0
Pitch gain sub-frame | 0 | O 5 5 5 7 7 7 0
Innovation gain| sub-frame | 0 | 1 0 1 1 3 3 3 0
InnovationVQ | sub-frame| 0| O | 16 | 20 | 35 | 48 | 64 | 96 | 10

| Total | frame | 5 | 43 | 119| 160| 220| 300| 364| 492| 79 |

Table 9.1: Bit allocation for narrowband modes

So far, no MOS (Mean Opinion Score) subjective evaluation theen performed for Speex. In order to give an idea of
the quality achievable with it, table 9.2 presents my ownjesttive opinion on it. It sould be noted that different peopl
will perceive the quality differently and that the persoattdesigned the codec often has a bias (one way or anothen) whe
it comes to subjective evaluation. Last thing, it should b&ed that for most codecs (including Speex) encoding qualit
sometimes varies depending on the input. Note that the eodtpls only approximate (within 0.5 mflops and using the éstv
complexity setting). Decoding requires approximately@ffiops in most modes (1 mflops with perceptual enhancement).

9.4 Perceptual enhancement

This section was only valid for version 1.1.12 and earlier.tidoes not apply to version 1.2-betal (and later), for which
the new perceptual enhancement is not yet documented.

This part of the codec only applies to the decoder and can legashanged without affecting inter-operability. For that
reason, the implementation provided and described hereldlomly be considered as a reference implementation. The
enhancement system is divided into two parts. First, théhegis filterS(z) = 1/A(z) is replaced by an enhanced filter:

B A(z/az)A(z/a3)
S0 = XD AG/a)

32

9 Speex narrowband mode

| Mode | Quality | Bit-rate (bps)| mflops |

Quality/description |

0 - 250 0 No transmission (DTX)

1 0 2,150 6 Vocoder (mostly for comfort noise)

2 2 5,950 9 Very noticeable artifacts/noise, good intelligibility

3 3-4 8,000 10 Artifacts/noise sometimes noticeable

4 5-6 11,000 14 Artifacts usually noticeable only with headphones

5 7-8 15,000 11 Need good headphones to tell the difference

6 9 18,200 17.5 | Hard to tell the difference even with good headphones
7 10 24,600 145 Completely transparent for voice, good quality musjc
8 1 3,950 10.5 Very noticeable artifacts/noise, good intelligibility

9 - - - reserved

10 - - - reserved

11 - - - reserved

12 - - - reserved

13 - - - Application-defined, interpreted by callback or skipped
14 - - - Speex in-band signaling

15 - - - Terminator code

Table 9.2: Quality versus bit-rate

wherea; anda, depend on the mode in use aay= % (1—

1-rag
1-rap

with r = .9. The second part of the enhancement consists

of using a comb filter to enhance the pitch in the excitatiomdim.

33

10 Speex wideband mode (sub-band CELP)

For wideband, the Speex approach usgsadraturamirror filter (QMF) to split the band in two. The 16 kHz signal is thus
divided into two 8 kHz signals, one representing the low b@hd kHz), the other the high band (4-8 kHz). The low band is
encoded with the narrowband mode described in section imaway that the resulting “embedded narrowband bit-stteam
can also be decoded with the narrowband decoder. Sincewhbdnd encoding has already been described, only the high
band encoding is described in this section.

10.1 Linear Prediction

The linear prediction part used for the high-band is veryilsinto what is done for narrowband. The only difference istth
we use only 12 bits to encode the high-band LSP’s using a staltje vector quantizer (MSVQ). The first level quantizes th
10 coefficients with 6 bits and the error is then quantizedg§ibits, too.

10.2 Pitch Prediction

That part is easy: there’s no pitch prediction for the higimdh. There are two reasons for that. First, there is usutlly |
harmonic structure in this band (above 4 kHz). Second, itlivbe very hard to implement since the QMF folds the 4-8 kHz
band into 4-0 kHz (reversing the frequency axis), which ns¢hat the location of the harmonics is no longer at multipfes
the fundamental (pitch).

10.3 Excitation Quantization

The high-band excitation is coded in the same way as for ndyaad.

10.4 Bit allocation

For the wideband mode, the entire narrowband frame is pao&fete the high-band is encoded. The narrowband part of the
bit-stream is as defined in table 9.1. The high-band foll@ssjescribed in table 10.1. For wideband, the mode ID is tine sa

as the Speex quality setting and is defined in table 10.2. dlkésmeans that a wideband frame may be correctly decoded by
a narrowband decoder with the only caveat that if more thafame is packed in the same packet, the decoder will need to
skip the high-band parts in order to sync with the bit-stream

| Parameter | Updateratef 0] 1 | 2 | 3 | 4 |
Wideband bit frame 1)1 1 1 1
Mode ID frame 3|3 3 3 3
LSP frame 012 12 | 12 | 12
Excitation gain| sub-frame| 0| 5 4 4 4
Excitation VQ | sub-frame| 0| O | 20 | 40 | 80

| Totall | frame |4]36][112]192]352|

Table 10.1: Bit allocation for high-band in wideband mode

34

10 Speex wideband mode (sub-band CELP)

| Mode/Quality | Bit-rate (bps)]

Quality/description |

Table 10.2: Quality versus bit-rate for the wideband encode

35

0 3,950 Barely intelligible (mostly for comfort noise)

1 5,750 Very noticeable artifacts/noise, poor intelligibility

2 7,750 Very noticeable artifacts/noise, good intelligibility

3 9,800 Artifacts/noise sometimes annoying

4 12,800 Artifacts/noise usually noticeable

5 16,800 Artifacts/noise sometimes noticeable

6 20,600 Need good headphones to tell the difference

7 23,800 Need good headphones to tell the difference

8 27,800 Hard to tell the difference even with good headphones
9 34,200 Hard to tell the difference even with good headphones
10 42,200 Completely transparent for voice, good quality music

A Sample code

This section shows sample code for encoding and decodirgbpesing the Speex API. The commands can be used to encode
and decode a file by calling:

% sanpleenc in_file.sw | sanpledec out file.sw

where both files are raw (no header) files encoded at 16 bitsgmeple (in the machine natural endianness).

A.1 sampleenc.c

sampleenc takes a raw 16 bits/sample file, encodes it andiswBSpeex stream to stdout. Note that the packing usest is
compatible with that of speexenc/speexdec.

Listing A.1: Source code for sampleenc

1 #include <speex/speex. h>

2 #include <stdio. h>

3

4 [+The frame size in hardcoded for this sanple code but it doesn't have to bex/
5 #define FRAME S| ZE 160

6 int main(int argc, char *=*argv)

7 {
8 char ~inFile;
9 FI LE *fi n;

10 short i n[FRAVE S| ZE] ;
11 float input[FRAVE Sl ZE] ;
12 char cbhits[200];

13 i nt nbBytes;

14 /*Hol ds the state of the encoder=/

15 void *state;

16 /*Hol ds bits so they can be read and written to by the Speex routines*/
17 SpeexBits bits;

18 int i, tnp;

19

20 /+Create a new encoder state in narrowband nodex/

21 state = speex_encoder _init(&speex_nb_node);

22

23 /+*Set the quality to 8 (15 kbps)*/

24 t mp=8;

25 speex_encoder _ctl (state, SPEEX SET_QUALITY, &tnp);

26

27 inFile = argv[1];

28 fin = fopen(inFile, "r");

29

30 /*Initialization of the structure that holds the bitsx/
31 speex_bits_init(&bits);

32 while (1)

33 {

34 /+*Read a 16 bits/sanple audio franex/

35 fread(in, sizeof(short), FRAME SIZE, fin);

36 if (feof(fin))

37 br eak;

38 /+Copy the 16 bits values to float so Speex can work on thenx/

36

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

© 00 N O OO b~ WDN PP

NNNNRPRRRRERRRR R R
W NP O OWOo0Ww~NOO O~ wWDNPE O

A Sample code

for (i=0;i<FRAVE_SIZE; i ++)
input[i]=in[i];

/*Flush all the bits in the struct so we can encode a new franmex/
speex_bits_reset(&bits);

/ *Encode the framex/

speex_encode(state, input, &bits);

/*Copy the bits to an array of char that can be witten*/
nbBytes = speex_bits wite(&its, cbits, 200);

/*Wite the size of the frane first. This is what sanpl edec expects but
it’s likely to be different in your own applicationx/

fwrite(&bBytes, sizeof(int), 1, stdout);

/*Wite the conpressed data*/

fwite(chits, 1, nbBytes, stdout);

}

/*Destroy the encoder statex/
speex_encoder _destroy(state);
/+=Destroy the bit-packing struct=/
speex_bits destroy(&its);
fclose(fin);

return O;

A.2 sampledec.c

sampledec reads a Speex stream from stdin, decodes it gna®iitto a raw 16 bits/sample file. Note that the packing used
is not compatible with that of speexenc/speexdec.

Listing A.2: Source code for sampledec

#i ncl ude <speex/speex. h>
#i ncl ude <stdi o. h>

/+*The frame size in hardcoded for this sanple code but it doesn’t ha